

Description

SL555 is a bipolar integrated circuit capable of generating high-precision timing pulses. Internally, it consists of four circuits: threshold comparator, trigger comparator, RS flip-flop, and output circuit. It can be used with external resistors and capacitors to form timing trigger circuits, pulse width modulation circuits, audio oscillators, and more. It is widely used in toys, signal traffic, automation control, and other fields.

Feature

- High timing precision
- Maximum operating frequency up to 500 kHz
- Strong output driving capability
- Compatible with T_{TL} circuits
- Excellent temperature stability
- Package types: SOP8, DIP8
- Timing duration can range from microseconds to hours (precisely controlled via external resistors and capacitors).

Ordering information

PN	Package	PN	Packing
SL555D	DIP8	SL555D	tape
SL555S	SOP8	SL555S	reel

Application

- Audio pulse generator, divider
- Pulse width modulation, pulse phase modulation
- Device timing, traffic light control, access control
- Industrial control

Pin configuration and function

Pin No.	Name	Function		
1	GND	power ground		
2	Trig	trigger		
3	Output	output		
4	Reset	reset		
5	Cont	control voltage		
6	Thres	threshold		
7	Disch	discharge		
8	V _{cc}	power supply positive		

Absolute maximum rating

Parameter	Symbol	Value	Unit
power supply voltage	V _{cc}	18	V
input voltage	V ₁ (thre, trig, cont, reset)	V _{CC}	V
output current	lo	±220	mA
power dissipation	PD	400	mW
operating temperature	T _A	-20~70	°C
storage temperature	Ts	-65~150	°C
soldering temperature	Tw	260,10s	°C

Note: The limit parameters refer to values that must not be exceeded under any circumstances. Exceeding these limits may lead to physical damage or degradation of the product. Additionally, operating near these limit parameters does not guarantee normal chip functionality.

Schematic diagram

Recommended electrical parameters

Parameter	Symbol	Value	Unit	
power supply voltage	Vcc	4.5~15	V	
maximum input voltage	Vth, Vtrig, Vcont, Vreset	Vcc	V	
output current	lo	±200	mA	

Electrical Parameter (T_A=25°C, Unless otherwise specified)

Parameter	Symbol		Test Condition	Min	Typ	Max	Unit
power supply voltage	V _{cc}			4.5	-	15	V
	Icc				3	6	mA
operating current		$V_{CC} = 5V, R_{L} = \infty, V_{O} = V_{OL}$		_	1.5	5	mA
		$V_{CC} = 35$, $R_{L} = \infty$, $V_{C} = V_{CL}$		-	8	15	mA
		$V_{CC} = 15V, R_1$	=~.Vo=VoH	_	6	13	mA
control terminal		V _{cc} =15V		-	10.0	11	V
voltage	V _{CL}	V _{CC} =5V		-	3.3	4	V
threshold voltage	V _{TH}	V _{cc} =15V		_	10.0	11.2	v
terminal voltage		V _{cc} =5V		-	3.3	4.2	V
threshold voltage current	*note1 I _{TH}	V _{CC} =15V, V _{TH} =0V		-	-	250	nA
trigger terminal		V _{cc} =15V			5.0	5.6	V
voltage	V _{TRIG}	$V_{\rm CC} = 5V$	V _{CC} = 5V		1.6	2.2	V
trigger terminal current	I _{TRIG}	V _{CC} =15V, V _{TRIG} =0V,		-	-	2	uA
reset terminal high voltage	V _{RESETH}	V _{CC} =5V		1.5	-	VCC	V
reset terminal low voltage	Vresetl	V _{cc} =5V		GND	-	0.5	V
	I _{RESET}	V _{RESET} =0.4V,V _{CC} =15V		-	0.13	0.4	mA
reset terminal current		V _{RESET} =0V,V _{CC} =15V		-	O.3	1.5	mA
	Vol	V _{cc} =15V, I _L =-5mA		-	0.02	0.25	V
		V _{CC} =15V, I _L =-50mA		-	0.04	0.75	
output low voltage		V _{CC} =15V, I _L =-100mA		-	2.0	2.5	
		V _{CC} =15V, I _L =-200mA		-	2.8	-	
		V _{CC} =5V, I _L =-5mA		-	0.08	0.35	
		V_{CC} =5V, I _L =-8mA			0.15	0.4	
output high voltage	V _{OH}	$V_{cc} = 15V, I_L = -100mA$		12.75	13.3	-	-
		$V_{CC} = 15V, I_L = -200mA$		-	12.2	-	V
discharge tube leakage current when off	I _{dis} (off)	V _{CC} =5V, I _L =-100MA V _{O=} V _{OH} , V _{dis} = 10V		-	-	100	nA
			V _{CC} =15V,Idis=15mA	-	140	480	mV
saturation voltage of discharge tube	V _{dis} (sat)	Vo=VoL	V _{CC} =5V,Idis=4.5mA	-	100	200	mV
output rise time	t _R	CL=15pF,		-	80	300	ns
output fall time	t⊧	CL=15pF		-	50	300	ns
timing error	*note2 Ts	R _A =2kΩ to	V _{CC} =15V,initial error	-	1	-	%
(monostable mode)	Tv	 100kΩ	drift with V _{CC} $(4.5V \sim 15V)$	-	0.1	-	%/V
	Tt	C=0.1uF	V _{cc} =15V,drift with temp $(0 \sim 60^{\circ}C)$	-	150	-	ppm℃
	^{*note2} T _s	R _A 、R _B =1kΩ	V _{cc} =15V,initial error	-	1	-	%
uming error (astable mode)	T _v	to 100kΩ	drift with V _{CC} $(4.5V \sim 15V)$	-	0.1	-	%/V
, ·	Tt	C=0.1uF	V_{CC} =15V,drift with temp (0~60°C)	-	150	-	ppm℃

Notes: 1. At Vcc=15V, the maximum value of Ra+Rb is 10M Ω ; at Vcc=5V, the maximum value of Ra+Rb is 3.4M Ω .

2. Timing error is defined as the difference between the measured value and the average value of random samples. Additionally, timing error is influenced by errors in external capacitors and resistors.

Typical application circuit

Monostable mode:

In monostable mode, when the input voltage reaches $1/3 V_{cc}$, the circuit triggers to output a high level. After maintaining this state for a duration of t = 1.1*RA*C, the output switches to a low level. During this time period (t), the output state remains unaffected by the input voltage's state. Refer to Circuit and Waveform in Figures 3 and 4.

In transient state mode:

The circuit automatically triggers to generate a square wave multivibrator output. The frequency and duty cycle of the output square wave can be adjusted by the sizes of RA, RB, and C. The triggering mode, charging and discharging times, as well as the frequency, are independent of the supply voltage. Refer to Circuit and Waveform in Figures 5 and 6.

---Total period:
$$T = th + tl = 0.693(RA+2RB)C$$

$$V_{Cc} = 5 \text{ to } 15V$$

Transitional state circuit

C ---Low-level output pulse width: tl = 0.693RBC

Frequency:
$$f = 1/T = 1.44/(RAC + 2RB*C)$$

Pulse width modulation:

When the timer is configured in monostable mode and continuous pulse trains are applied to pin 2 for triggering, the output pulse width can be modulated by a signal applied to pin 5. Refer to Figures 7 and 8.

Pulse width modulation circuit

Pulse width modulation circuit waveform diagram

Pulse position modulation:

When the timer is connected as shown in Figure 9, the position of the output pulses can be modulated by a signal applied to pin 5. Refer to Figures 9 and 10.

Pulse position modulation circuit

Pulse position modulation circuit waveform diagram

Package

