

Relay driver chip

Description

The SL8023 is a bidirectional relay driver IC designed for controlling operations of DC motors, latching relays, and similar devices. It features high output current capability and low static power consumption, making it suitable for a wide range of applications including smart meters and other pulse or level conversion applications.

Features

• The chip has a DC withstand voltage of 40V, with a maximum operating voltage limit of 30V. The recommended safe operating voltage range is 5 to 15V (this range is recommended for commercially available relays rated around 9 to 12 ohms; other relay specifications should be determined based on actual testing).

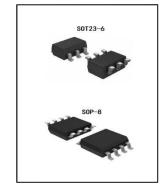
- Maximum operating current is 800mA.
- Input high-to-low voltage conversion levels are around 1.5V, compatible with various microcontrollers.

• Integrated high-speed freewheeling diode with clamping reverse voltage function, suitable as a substitute for TVS diodes in general applications.

• Typical operating power is 5W (equivalent to outputting 400mA current at 12V operating voltage; corresponding output current should decrease with increased operating voltage).

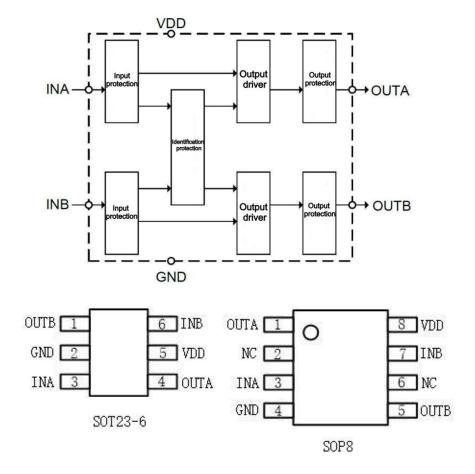
• Maximum power is 10W (equivalent to outputting 800mA current at 12V operating voltage; corresponding output current should decrease with increased operating voltage. Operating beyond the maximum power will damage the chip).

Applications


- Smart electric meters
- Motor driving
- Control of latching relays

Ordering information

Product Number	Encapsulation	Packing	Min Packaging Quantity
SL8023	SOT23-6	reel	3000
SL8023S	SOP8	reel	4000


Printing rules

Package	Logo Silk Screen
SOT23-6	8023S
SOP8	8023S

Functional block diagram and pin assignment

Pin description

Pin N	umber	Symbol	Description
SOT23-6	SOP8	Symbol	Description
5	8	VDD	chip power input
2	4	GND	chip ground
3	3	INA	A-channel logic input
4	1	OUTA	A-channel drive output
6	7	INB	B-channel drive output
1	5	OUTB	B-channel drive output

Functional description

SL8023 is a bidirectional relay driver integrated circuit used for controlling DC motors, latching relays, and similar devices. INA and INB are triggered by pulses; simply connecting the input terminals to the corresponding device outputs enables operation. Trigger pulses activate the relay according to the functional table states.

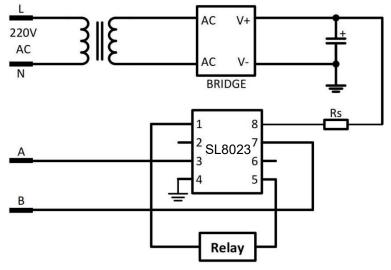
Input		Output		
INA	INB	OUTA	OUTB	
0	0	high resistance	high resistance	
0	1	0	1	
1	0	1	0	
1	1	high resistance	high resistance	

Logic Function Table

Limit parameters

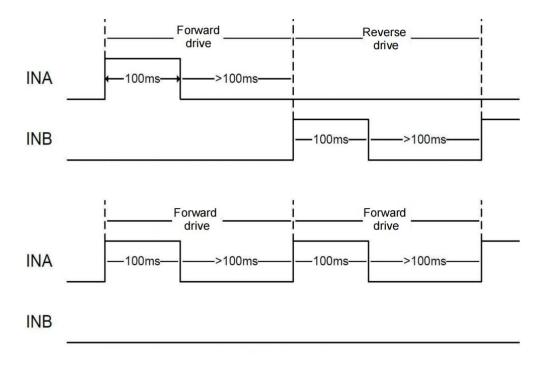
Unless otherwise specified, $\ensuremath{\text{T}_{\text{amb}}\text{=}}\xspace 25\,\ensuremath{^{\circ}\text{C}}\xspace$

Parameter	Symbol	Rated Value	Unit
voltage	Vdd-Vgnd	+40	V
OUTA, OUTB pins	Vouta/Voutb	+40	V
other pin input/output voltage	VIN/VOUT	V _{GND} -0.4~V _{DD} +0.4	V
max junction temp	Tj	150	°C
storage temperature	Tstg	-65~150	°C
thermal resistance (junction to ambient)	R _{ja}	120	°C/W
human body ESD discharge model	НВМ	8000	V
machine ESD discharge model	MM	200	V


Electrical characteristics

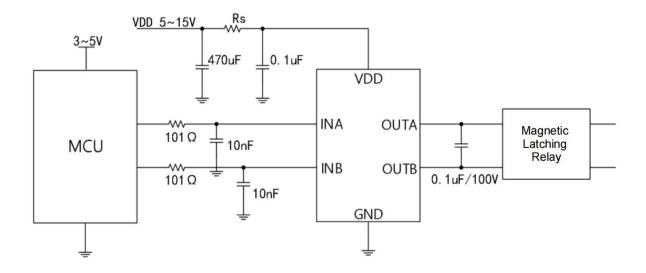
Unless otherwise specified, $\ensuremath{\,T_{amb}}\xspace=25\,{\rm ^\circ C}$

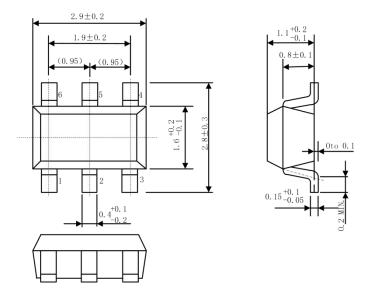
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Static shutdown chara	cteristics					
output pin breakdown current	BV _{DSS}	V _{INA} =V _{INB} =0V, I _D =250uA	40			V
output pin leakage current	IDSS	$V_{\text{INA}}=V_{\text{INB}}=0V, V_{\text{D}}=24V$			10	uA
Static opening charact	teristics					
input tube turn-on voltage	VTH			1.5	2	V
		V_{DD} =12V, RL=80 Ω		7	10	Ω
output tube equivalent		V_{DD} =30V, RL=80 Ω		6	10	Ω
on-resistance	Rds(on)	V_{DD} =12V, RL=40 Ω		7	10	Ω
		$V_{\text{DD}}=30V$, $R_{\text{L}}=40\Omega$		6	10	Ω
Input characteristics			·	•		
input resistance to ground	Rin	$V_{DD}=12V, V_{INA}=V_{INB}=0V$		120		kΩ
input current	lin	VINA=3V or VINB=3V		250	400	uA
		VINA=5V or VINB=5V		450	600	uA
Flyback diode charact	eristics					
forward voltage	Vsd	ls=1A		1.5	2	V
reverse recovery time	T _{RR}	V_{DD} =12V, RL=80 Ω		190		ns
Transmission characte	eristics		·			
rising edge time	TR	V_{DD} =12V, RL=80 Ω		50		ns
on delay	T _{D(ON)}	V_{DD} =12V, RL=80 Ω		60		ns
falling edge time	TF	V_{DD} =12V, RL=80 Ω		50		ns
off delay	TD(OFF)	V_{DD} =12V, RL=80 Ω		2		us



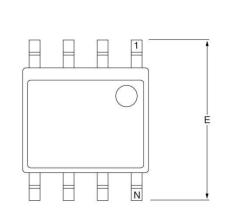
Typical application circuit

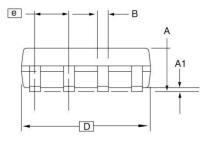
Typical Application Diagram

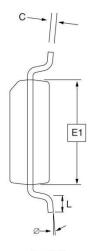

Input terminals A and B are pulse-triggered, requiring connection of the chip's input terminals to the corresponding device outputs for operation. Trigger pulses activate the relay according to the functional table states. In smart electric meter applications, a pulse width of 100 milliseconds is recommended. Minimum intervals of 100 milliseconds are required between: forward drive and the next forward drive pulse, forward drive and reverse drive pulses, reverse drive and forward drive pulses, and reverse drive and the next reverse drive pulse. A pulse diagram is provided below for reference.



Recommended circuit




Package dimensions (SOT23-6)


Package dimensions (SOP8)

Top View

Side View

End View

SYMBOL	MIN	NOM	MAX	NOTE
A	1.35	-	1.75	
A1	0.10	-	0.25	
b	0.31	-	0.51	
С	0.17	-	0.25	
D	4.80	-	5.00	
E1	3.81	-	3.99	
E	5.79	-	6.20	
е		1.27 BSC		
L	0.40	-	1.27	
Ø	0°	-	8°	