

INTER SERVIER SERVIER

1.Introduction

**S//

Integrated Hall High-Performance Linear Current Sensor

1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making i ACS724L**

Integrated Hall High-Performance Linear Current Sensor

1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, mak **CULTERT INTERT ACTES AND A CALL INTERTATION INTERTATION IN THE ACS724 IS a high-performance Hall effect current sensor
The ACS724 is a high-performance Hall effect current sensor
that effectively measures both alternating Integrated Hall High-Performance Linear Current Sensor**
 1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making it **Integrated Hall High-Performance Linear Current Sensor**
 1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making it **Integrated Hall High-Performance Linear Current Sensor**
 1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making it Integrated Hall High-Performance Linear Current Sensor

1.Introduction

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making it suit **1. Introduction**
The ACS724 is a high-performance Hall effect current sensor
that effectively measures both alternating (AC) and direct (DC)
currents, making it suitable for a wide range of applications in
industrial, con **1.Introduction**
The ACS724 is a high-performance Hall effect current sensor
that effectively measures both alternating (AC) and direct (DC)
currents, making it suitable for a wide range of applications in
industrial, cons **1.Introduction**

The ACS724 is a high-performance Hall effect current sensor

that effectively measures both alternating (AC) and direct (DC)

currents, making it suitable for a wide range of applications in

industrial, 1.Introduction
The ACS724 is a high-performance Hall effe
that effectively measures both alternating (A
currents, making it suitable for a wide range
industrial, consumer, and communication de
ACS724 series integrates a hi The ACS724 is a high-performance Hall effect current sensor
that effectively measures both alternating (AC) and direct (DC)
currents, making it suitable for a wide range of applications in
industrial, consumer, and communi The Recortation measures both alternations rand enter current sensor
that effectively measures both alternating (AC) and direct (DC)
currents, making it suitable for a wide range of applications in
industrial, consumer, an signal amplifier, high-precision temperature compensation of the currents, making it suitable for a wide range of applications in
industrial, consumer, and communication devices. The
ACS724 series integrates a high-precisi unity is valuation devices. The

industrial, consumer, and communication devices. The

ACS724 series integrates a high-precision, low-noise linear

Hall circuit and a low-resistance main current loop conductor.

When the s

amplifier in the Hall circuit, and

amplifier output model and precision, low-noise linear

Hall circuit and a low-resistance main current loop conductor.

When the sampled current flows through the main current

loop, the And circuit and a low-resistance main current loop conductor.

When the sampled current flows through the main current

loop, the generated magnetic field induces a corresponding

electrical signal in the Hall circuit whic Frame of surface that is produced using advanced BCDMOS

When the sampled current flows through the main current

loop, the generated magnetic field induces a corresponding

electrical signal in the Hall circuit, which is view the sampled content lives incompled by the magnetic field induces a corresponding

electrical signal in the Hall circuit, which is processed to

untimode signal amplifier, high-precision temperature compensation

sig boop, the generated magnetic field induces a correspondinent detectrical signal in the Hall circuit, which is processed to output a voltage signal that is strictly proportional to the measured current.
The linear Hall circ The linear Hall circuit is produced using advanced BCDMOS

technology, featuring a highly sensitive Hall sensor, Hall

unit, oscillator, dynamic offset cancellation circuit, and

unit, oscillator, dynamic offset cancellati The linear Hall circuit is produced using advanced BCDMOS

technology, featuring a highly sensitive Hall sensor, Hall

unit, oscillator, dynamic offset cancellation circuit, and

amplifier output module. In the absence of The linear Hall circuit is produced using advanced BCDMOS

technology, featuring a highly sensitive Hall sensor, Hall

ignal amplifier, high-precision temperature compensation

unit, oscillator, dynamic offset cancellatio Example the stating a mynimizer compensation

isignal amplifier, high-precision temperature compensation

unit, oscillator, dynamic offset cancellation circuit, and

the static output module. In the absence of a magnetic From the mean transfer that the sense of a measure and operating a highly sensitive Hall sensor, Hall

and a sensor is signal amplifier, high-precision temperature compensation

amplifier output module. In the absence of

vary between 0.2 to 4.8V based on the magnetic field, with

Invertigating up to 0.4%.

The integrated dynamic offset cancellation circuit ensures

that the sensor's sensitivity is unaffected by external pressure

that the Photographotomic inset cancellation circuit ensures

that the sensor's sensitivity is unaffected by external pressure

and IC packaging stress. The ACS724 is available in an

SOP8 package and operates within a temperature

2.Application

-
-
-
-
-
-

-
-
-
-
-
-
-
- **Product Functions**

Operating voltage: $4.5V 5.5V$

Static common-mode output point: 50%

Wide measurement range: $5A/10A/20A/3$

Isolation voltage: $2500V$

High bandwidth: $120kHz$

Output response time: $4\mu s$ (typical ow noise analog signal path; stror apability; y t Functions
g voltage: 4.5V – 5.5V
mmon-mode output point: 50% Vc
asurement range: 5A/10A/20A/30A/50A
voltage: 2500V
dwidth: 120kHz
sponse time: 4µs (typical);
within operating range: 1.5% @ 25℃~150℃;
0℃~25℃;
e analog sig 3. **Product Functions**

• Operating voltage: $4.5V - 5.5V$

• Static common-mode output point: 50% Vc

• Wide measurement range: $5A/10A/20A/30A/50A$

• Isolation voltage: $2500V$

• High bandwidth: $120kHz$

• Output respon • Operating voltage: $4.5V - 5.5V$
• Static common-mode output point: 50% Vc
• Wide measurement range: 5A/10A/20A/30A/50A
• Isolation voltage: 2500V
• High bandwidth: 120kHz
• Output response time: 4µs (typical);
• Stabil
-
-
-
-

ACS724LLCTR-05A

ACS724LLCTR-10A

ACS724LLCTR-20A

ACS724LLCTR-30A

ACS724LLCTR-50A

8. Feature Definition
 8.1Power-on time——TPO

When the power supply rises to the operating voltage, the chip requires a limite

responding to the input magnetic field. Power-up time: the time taken for the po

voltage 8. Feature Definition

8. The power on time——TPO

When the power supply rises to the operating voltage, the chip requires a limited time to power its internal components before

responding to the input magnetic field. Powe **S//CO/V**
8. Feature Definition
8.1Power-on time——TPO
When the power supply rises to the operating voltage, the chip requires a limited time to power its internal components before
responding to the input magnetic fiel **S//OF**

8. Feature Definition

8.1Power-on time—TPO

When the power supply rises to the operating voltage, the chip requires a limited time to power its internal components before

responding to the input magnetic field. 8. **Peature Definition**

8. **Power-on time——TPO**

When the power supply rises to the operating voltage, the chip requires a limited time to presponding to the input magnetic field. Power-up time: the time taken for the po

8.2Temperature adjustment power-
After power-up, a temperature adjustment time is numerature compensation output is achieved.
8.3Transmission delay----TPD
The time difference between when the external
of the final value.

The time difference between when the external magnetic field reaches 20% of the final value and when the output reaches 20%

The time difference between when the external magnetic field reaches 20% of the final value and

8.6Quiescent voltage output——VOQ
The chip output when the chip power supply voltage and ambient temperature are within
The chip output when the chip power supply voltage and ambient temperature are within
Note: Long-term **S//OF**
 ACS724LLCTR Series

The chip output when the chip power supply voltage and ambient temperature are within the operating

range and the measured current is 0.

Note: Long-term operation at the maximum rating may **SHAOF**
 ACS724LLCTR Series

The chip output when the chip power supply voltage and ambient temperature are within the operating

range and the measured current is 0.

Note: Long-term operation at the maximum rating may

SANSANS AND AND SEARCH SE example 3.1 ACS7
Example 3.6Quiescent voltage output—VOQ
The chip output when the chip power supply voltage and ambient temperature are
range and the measured current is 0.
Note: Long-term operation at the maximum rati

8.6Quiescent voltage output——VOQ

The chip output when the chip power supply voltage and ambient temperature are within

The chip output when the chip power supply voltage and ambient temperature are within

The chip out The chip output when the chip power supply voltage and ambient temperature are within the operating
The chip output when the chip power supply voltage and ambient temperature are within the operating
Note: Long-term operat The chip output when the chip power supply voltage and ambient temperature are within the operating
range and the measured current is 0.
Note: Long-term operation at the maximum rating may affect the reliability of the dev range and the measured current is 0.
Note: Long-term operation at the maximum rating may affect the reliability of the device, and
exceeding the maximum rating may damage the device.
8.7Quiescent voltage output error—VOE Note: Long-term operation at the maximum rating may affect the reliability of the device, and exceeding the maximum rating may damage the device.
 8.7Quiescent voltage output error—VOE

The difference between the actual

8.8Sensitivity——Sens Stativity indicates the actual output for the sensor and the ideal output voltage supply when the measured current value is zero. When the output voltage is fixed, the static voltage output error is the difference between **8.7Quiescent voltage output error—VOE**
The difference between the actual output voltage of the sensor and the ideal output voltage supply when the measured
current value is zero. When the output voltage is fixed, the stat **8.7Quiescent voltage output error—VOE**
The difference between the actual output voltage of the sensor and the ideal output voltage supply when the measured
current value is zero. When the output voltage is fixed, the sta **8.7Quiescent voltage output error—VOE**
The difference between the actual output voltage of the sensor and the ideal output voltage supply when the measured
current value is zero. When the output voltage is fixed, the stat The difference between the actual outp
current value is zero. When the output
actual output error and the 2.5V voltag
error is the difference between the actu
8.8Sensitivity—Sens
Sensitivity indicates the change in se
The **8.8Sensitivity—Sens**
 8.8Sensitivity—Sens
 Sensitivity indicates the change in sensor output for every 1A change in the measured current, in units of mV/A.

The calculation method is to pass the positive full-scale cu **8.8Sensitivity—Sens**

Sensitivity indicates the change in sensor output for every 1A change in the measured current, in units of mV/A.

The calculation method is to pass the positive full-scale current and the negative fu 8.8Sensitivity——Sens

Sensitivity indicates the change in sensor output five calculation method is to pass the positive full-

difference in the sensor output voltage at two poin

current and the negative full-scale curren Sensitivity indicates the change in sensor output for every 1A change
The calculation method is to pass the positive full-scale current and the
difference in the sensor output voltage at two points is divided by the
curren

```
SENS=(Vout(IPma0)-Vout(Inma0))/(IPma0-Inma0)
```
current and the negative full-scale current, which is the sensitivity of the sensor. The specific calculation formula is
as follows:
SENS=(Vout(IPma0)-Vout(Inma0))/(IPma0-Inma0)
IPma0 and Inma0 at here are positive full-sc stand Inma0 at here are positive full-scale current and negative full-scale current respectively, Vout(IPma0)
and Vout(Inma0) are the analog output voltage of the sensor when the positive full-scale current and negative fu SENS=(Vout(IPma0)-Vout(Inma0))/(IPma0-Inma0)
IPma0 and Inma0 at here are positive full-scale current and negative full-scale current respectively, Vou
and Vout(Inma0) are the analog output voltage of the sensor when the po

Final was the maximum of the sensor when the positive full-scale current and negative full-
and Vout(Imma0) are the analog output voltage of the sensor when the positive full-scale current and negative full-
scale current and vout_ummatry are the analog output voltage of the sensor when the positive fun-scale
scale current are respectively.
8.9Global error range——**ETOT**
This error value of the measurement error in each temperature range

ETOT(IP)=Ma0(Vout-Vout_idea)/(Vout(IPma0)-Voq)

Example 18.10 This error value represents the maximum error of the sensor under

value of the measurement error in each temperature range within the

maximum output dynamic range of the sensor. It can be express

ETOT(IP This ento value elpresents the intakminant ento to the sensor that culture values sensor interactions and the measurement range, divided by the maximum output dynamic range of the sensor. It can be expressed as follows:

E maximum output dynamic range of the sensor. It can be expressed as follows:

ETOT(IP)=Ma0(Vout-Vout_idea)/(Vout(IPma0)-Voq)

MaO(Vout-Vout_idea) represents the maximum error within the measurement range, and (Vout(IPma0)- $\text{ETOT}(\text{IP})=\text{MaO}(\text{Vout-Vout_idea})/(\text{MaO}(\text{Vout-Vout_idea})\ \text{represents the maximum error within the represents the maximum output dynamic range of the sensor.}\$
 8.10Nonlinearity error——ELIN

Since the sensor is a non-ideal device, its output voltage and measurapplications. After least squares linear fitting, represents the maximum output dynamic range of the sensor.
 8.10Nonlinearity error——ELIN

Since the sensor is a non-ideal device, its output voltage and measured current are not completely l

applications. After least s

ELIN(IP)=△Vout/(Vout(IPma0)-Voq)

20A Sensitivity changes with temperature

30A Sensitivity changes with temperature

40A Sensitivity changes with temperature

50A Sensitivity changes with temperature

10. Typical application circuit
The typical application circuit
Determined application circuit of ACS724 includes a filter capacitor C between
between the output and ground. At the input end of the measured current, pins S/KOM
The typical application circuit of ACS724 includes a filter capacitor C between Vc and ground, and an optional filter capacitor Co
between the output and ground. At the input end of the measured current, pins 1 and 2 **between the output and ground. At the input end of the measured current, pins 1 and 2 are short-circuited together as the input end of the measured current, and ground, and an optional filter capacitor Conditioner and gro S//xore 10. The typical application circuit**

The typical application circuit of ACS724 includes a filter capacitor C between Vc and ground, and an optional filter capacitor Co

between the output and ground. At the inpu **S//**
S//
S//
**The typical application circuit of ACS724 includes a filter capacitor C between Vc and ground, and an optional
between the output and ground. At the input end of the measured current, pins 1 and 2 are sh**

11. Packaging information

12.Precautions

Hall is a sensitive device. During use and storage, electrostatic protection measures should be taken. During installation and use, the mechanical stress applied to the device housing and leads should be minimized. It is recommended that the welding temperature does not exceed 350°C and the duration does not exceed 5 seconds.

To ensure the safety and stability of the Hall chip, it is not recommended to use it beyond the parameter range for a long time.